📊 AP Statistics Summer Work 📊

Welcome to **AP Statistics**!

This summer assignment is meant to help you build confidence in analyzing data before the school year begins. Don't stress—plenty of space is provided for you to show your work and think things through.

What's Included:

1. Reading & Vocabulary (Optional)

- Use the free website: www.stattrek.com
- Click on "AP Statistics" "AP Tutorial"
- Review the listed subtopics and, if you'd like, complete the vocabulary list provided.
- This section is optional and will not be graded, but it's a helpful way to get familiar with key terms.

2. Practice Problems (Required & Graded)

- After reviewing the material, complete the practice problems in the space provided.
- This section is required and will count as your first grade in AP Statistics.
- This assignment will be graded as a test grade.

Extra Notes: A graphing calculator is a required tool for this course. The TI-84 is recommended. As you complete the practice problems, reference the skills below to assist you. Data

One	Variable

Function	When to use it	Input Command
1-Var Stats (STAT, CALC)	To find mean, standard deviation, and 5 number summary for a data set.	Enter data in L ₁ and frequency in L ₂ if needed 1-Var Stats L ₁ or 1-Var Stats L ₁ ,L ₂

Two Variable Data

Function	When to use it	Input Command
LinReg (a + bx)	To find the equation for a	Enter values in L ₁ (explanatory)
(STAT, CALC) DiagnosticOn	least squares regression line. To find r and r ² .	Enter values in L ₂ (response) LinReg (a + bx) L ₁ ,L ₂

A graphing calculator is a required tool for this course. The TI-84 Plus or the TI-84 Plus CE are the recommended calculators. As you complete the practice problems refer to the \mathbf{T} Guidebooks to become familiar with the list and statistical functions. For an online calculator go to https://ti84calc.com/ti84calc or www.alcula.com/calculators/statistics

Suggested June Pacing (Optional Vocabulary Practice)

If you'd like a head start on AP Statistics vocabulary, here's a relaxed weekly plan just for June. This section is **not graded**, but it's a great way to feel more confident with key terms and graph types before we dive into content in August.

Week 1: June 3 – June 7

- Variables: Categorical, Quantitative, Discrete, Continuous
- Data Types: Univariate, Bivariate, Population, Sample

Week 2: June 10 – June 14

- Center & Spread: Mean, Median, Range, Outlier, Parameter, Statistic
- More Measures: Standard Score (z-score), Variance, Standard Deviation

Week 3: June 17 – June 21

- Shape & Distribution: Symmetry, Unimodal, Bimodal, Skewness, Uniform, Gaps
- Graph Types: Dotplots, Bar Chart, Histogram, Differences Between the Two

Week 4: June 24 – June 28

- More Graphs: Stemplots, Boxplots, Quartiles, IQR
- Describing Data Sets: 4 Characteristics & Comparison Graphs

🗾 July Game Plan (Required & Graded Practice Problems)

These problems are *required* and will be *graded as a test grade* at the start of the school year. Use this weekly plan to stay on track through July!

Week 1: July 1 – July 5

- Categorical or Quantitative?
- Statistics What is That? (McGuire Home Run Stats)

Week 2: July 8 – July 12

- Actual Candy Percentages
- Bar Graph & Pie Chart Practice

Week 3: July 15 – July 19

- It's a Twister!
- Create a Dotplot for Hurricane Data

Week 4: July 22 - July 26

- Shopping Spree
- Create a Stemplot
- Where Do the Older Folks Live?
- Complete Histogram and Frequency Table

Week 5: July 29 - August 2

- SSHA Scores
- Numerical Summaries & Parallel Boxplots

If you have any questions, you can email me at <u>kolton.begley@knoxschools.org</u>. Please know it may take 48 hours to receive a response in the summer, and I will not be able to answer emails from June 1-9 or from June 24 to June 30. Good luck!

Part 1: Vocabulary List

Please define each of the following terms from the information on the stattrek website. When asked to provide a UNIQUE example or sketch of the word, provide one that is not on the website and not one that your friends use \odot

Word/Definition Categorial Variables	Example/Picture/Formula
Categorial Variables	
Quantitative Variables	
Discrete Variables	
Continuous Variables	

Universitate Data	
Univariate Data	
Bivariate Data	
Population	
Sample	

Modian	
Median	
Magn	
Mean	
Outlier	
Parameter	

Statistia	
Statistic	
Range	
Kunge	
Standard Score (z-score)	
Center	

Crowney	
Spread	
Variance	
Vanance	
Standard Deviation	
Symmetry	

Unimodal	
Bimodal	
Skewness (Left vs. Right)	
Uniform	
L	

Gaps	
Dotplots	
Bar Chart	
Histogram	

Difference Between a Par Chart and	
Difference Between a Bar Chart and	
Histogram	
Stemplot	
Develote	
Boxplots	
Quartiles	

Panae	
Range	
Interquartile Range	
Four ways to describe data sets	
Types of Graphs that can be used for	
comparing data	

Part Two: Practice Problems

Categorical or Quantitative

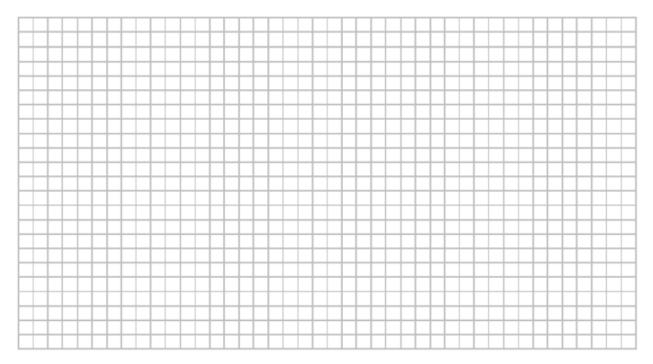
Determine if the variables listed below area quantitative or categorical.

- 1. Time it takes to get to school
- 2. Number of people under 18 living in a household
- 3. Hair color
- 4. Temperature of a cup of coffee
- 5. Height
- 6. Amount of oil spilled
- 7. Age of Oscar winners
- 8. Jellybean flavors
- 9. Country of origin
- 10. Number of pairs of shoes owned

Statistic – What is that?

A statistic is a number calculated from a sample of data. Quantitative data has many different statistics that can be calculated. Determine the given statistics from the data below on the number of homeruns Mark McGuire hit in each season from 1982-2001.

70	52	22	49	3	32	58	39
39	65	42	29	9	32	9	33

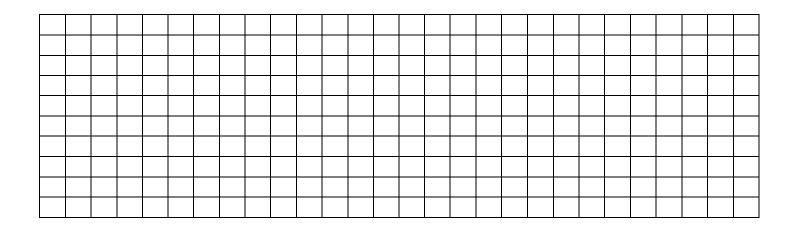

Mean	
Minimum	
Maximum	
Median	
Q1	
Q3	
Range	
Interquartile Range (IQR)	

Actual Candy Percentages

Suppose that you were interested in the actual percentage of each flavor skittle that was in a bag. To do this, you decide to purchase 5 bags of skittles and count how many of each flavor was in each bag (before enjoying them, of course!) You found that there are 176 green apple, 123 strawberry, 225 grape, 252 lemon, and 237 orange.

1. Find the percent of color of skittles from the total amount in your 5 bags, rounded to the nearest percent.

2. NEATLY created a well-labeled bar graph of the distribution of colors of skittles.


3. A pie chart is another graphical display used to show all the categories in a categorial variable relative to each other. Create a pie chart for colors of skittles.

It's a Twister!

The data below give the number of hurricanes that happened each year from 1944 through 2000 as reported by *Science* magazine.

3	2	1	4	3	7	2	3	3	2	5	2	2	4	2	2	6	0	2	5	1	3	1	0
3	2	1	0	1	2	3	2	1	2	2	2	3	1	1	1	3	0	1	3	2	1	2	1
1	0	5	6	1	3	5	3																

1. Make a dotplot to display these data. Make sure you include appropriate label, title, and scale. The graph paper below should help to ensure you space your markings consistently.

Shopping Spree

A marketing consultant observed 50 consecutive shoppers at a supermarket. One variable of interest was how much each shopper spent in the store. Here are the data (rounded to the nearest dollar), arranged in increasing order.

3	9	9	11	13	14	15	16	17	17
18	18	19	20	20	20	21	22	23	24
25	25	26	26	28	28	28	28	32	35
36	39	39	41	43	44	45	45	47	49
50	53	55	59	61	70	83	86	86	93

1. Make a stemplot using tens of dollars as the stem and dollars as the leaves. Make sure you include appropriate labels, title, and key.

Where do the older folks live?

State	Percent	State	Percent	State	Percent
Alabama	13.1	Louisiana	11.5	Ohio	13.4
Alaska	5.5	Maine	14.1	Oklahoma	13.4
Arizona	13.2	Maryland	11.5	Oregon	13.2
Arkansas	14.3	Massachusetts	14.0	Pennsylvania	15.9
California	11.1	Michigan	12.5	Rhode Island	15.6
Colorado	10.1	Minnesota	12.3	South Carolina	12.2
Connecticut	14.3	Mississippi	12.2	South Dakota	14.3
Delaware	13.0	Missouri	13.7	Tennessee	12.5
Florida	18.3	Montana	13.3	Texas	10.1
Georgia	9.9	Nebraska	13.8	Utah	8.8
Hawaii	13.3	Nevada	11.5	Vermont	12.3
Idaho	11.3	New Hampshire	12.0	Virginia	11.3
Illinois	12.4	New Jersey	13.6	Washington	11.5
Indiana	12.5	New Mexico	11.4	West Virginia	15.2
Iowa	15.1	New York	13.3	Wisconsin	13.2
Kansas	13.5	North Carolina	12.5	Wyoming	11.5
Kentucky	12.5	North Dakota	14.4		

This table gives the percentage of residents aged 65 or older in each of the 50 states.

Histograms are a way to display groups of quantitative data into bins (the bars). These bins have the same width and scale and are touching because the number line is continuous. To make a histogram you must first decide on an appropriate bin width and count how many observations are in each bin. The bins for percentage of residents aged 65 or older have been started below for you.

1. Finish the

chart of bin width and then create a histogram using those bins on the grid below. Make sure you include appropriate labels, title, and scale.

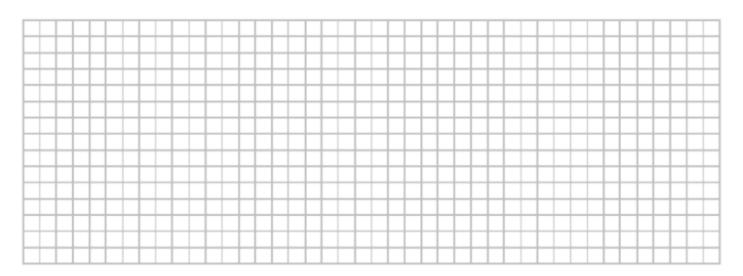
Bin Widths	Frequency
4 to < 6	1
6 to < 8	
8 to < 10	

4											 				 					
1																				
ł	_					-	-	-	-		-	_				-				
ļ	_			_								_		_						
I																				
ĺ																				
ł	-	-		-		-		_	-	-	-	-	-	-	 -	-	-			-
l																				
I																				
Ì	_						_	_				_				-				
ł	_	_	-	_					_			_	-	_	 _				_	
l																				
ĺ																				
ł	_	-																		
ł																				
I																				
ĺ																				
ł	_		-	-							 		-		 -					-
l																				
I																				
Ì	_			_			_		_		_	_		_		_				
ł	_		-	_							 				 				_	
l																				
ĺ																				
ł	_	-		-		-		_			_	_		-		_				
ļ	_																			
l																				
l																				
ł	_	-			-	-		_	-	-	_	_	-			_		-		
ļ																				
l																				
ĺ																				
ł	_					-						_								
l																				_
1			_																	-

SSHA Scores

Here are the scores on the Survey of Study Habits and Attitudes for first year college students.

154	109	137	115	140	154	101	103	126
137	165	165	129	200	148	152	178	126


Here are the scores on the Survey of Study Habits and Attitudes for third year college students.

108	151	140	70	114	115	91	187	180	104
115	126	92	169	146	109	132	75	88	113

1. Put the data values in ascending order for each group above. Compute numerical summaries for each group.

First Year Students	Third Year	Students
Mean	Mean	
Minimum	Minimum	
Q1	Q1	
Median	Median	
Q3	Q3	
Maximum	Maximum	
Range	Range	
IQR	IQR	

2. Using the minimum, Q1, Median, Q3, and Maximum from each group of students, make parallel boxplots to compare the distributions.

